This is worth TEN assignments and is due by the end of class today!
NO WORK $=$ NO CREDIT $\mathrm{X}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \quad \mathrm{D}=b^{2}-4 a c$
There are several words that are interchangeable in mathematics in these sections
a. Roots
b. X intercepts
c. Solutions
d. Zeros

These words are the "answers" that we are looking for when we solve an equation, in particular when we are solving quadratic equations. So when a question asks you for the "root" of a quadratic equation, they are simply asking for the solution or the x intercept. Since we are setting an equation equal to 0 , we can also say that we are looking for the zeros of a quadratic equation.

1. Find the zeros of the quadratic equation $x^{2}-12 x=2 x+32$
2. Find the roots of the quadratic equation $x^{2}-12 x=2 x^{2}+52$
3. Find the solutions of the quadratic equation $3 x^{2}-10 x=2 x^{2}-32$

Parts of a Parabola

4. Given that you know that the x intercepts of a parabola are $(12,0)$ and $(-2,0)$ find the axis of symmetry
5. Given the quadratic function $y=12-3 x^{2}-10 x$ find the vertex and axis of symmetry and y intercept
a. Vertex as a point \qquad
b. Axis of symmetry as an equation \qquad
c. Y intercept as a point \qquad
6. Rewrite the following quadratic equation in standard form with a positive lead coefficient $-3 x^{2}-7 x=8 x^{2}-2$
a. Standard form equation \qquad $\mathrm{a}=$ \qquad $b=$ \qquad
\qquad
b. What is the discriminant of this quadratic equation? \qquad
7. Simplify the expression completely
$\sqrt{-32}$
8. Simplify the expression completely
$\frac{-12 \pm \sqrt{-24}}{6}$
9. Simplify the expression completely
$\frac{8 \pm 4 \sqrt{5}}{10}$
10. If you have
\qquad , then
your quadratic equation will have 1 real solution
a. $\quad D=0$
b. $\quad \mathrm{D}>0$
c. $\mathrm{D}<0$
11. If you have
\qquad , then
your quadratic equation will have 2 imaginary solutions
a. $\quad D=0$
b. $\quad \mathrm{D}>0$
c. $\mathrm{D}<0$
12. If your parabola NEVER crosses the x axis, then you have \qquad
a. $\quad D=0$
b. $\quad \mathrm{D}>0$
c. $\mathrm{D}<0$
13. If you have
\qquad , then your quadratic equation will have 2 real solutions
a. $\quad D=0$
b. $\quad D>0$
c. $\mathrm{D}<0$
14. If your parabola "bounces" off the x axis, then you have \qquad
a. $\quad D=0$
b. $D>0$
c. $\mathrm{D}<0$
15. Which of the following discriminants comes from a factorable quadratic equation?
a. $\quad D=12$
b. $D=-25$
c. $D=17$
d. $D=49$
16. If you have
\qquad , then
your quadratic equation will have no real solutions
a. $D=0$
b. $\quad D>0$
c. $\mathrm{D}<0$
17. If your parabola crosses the x axis in two places, then you have
a. $\quad D=0$
b. $\quad D>0$
c. $\mathrm{D}<0$
18. Which of the following discriminants comes from a factorable quadratic equation?
a. $\quad D=12$
b. $D=-25$
c. $D=0$
d. $\quad D=-64$

Imaginary numbers

19. Which of the following is written in complex number form? a. $5 i+6$ b. $6+5 i(5-i)$ c. $-2+6 \mathrm{i}$ d. $-2-7 i^{2}$	20. Simplify i^{14}	21. Simplify i^{45}
22. Simplify (6-2i)(5+4i)	23. $(6-2 i)+(5+4 i)$	24. $(6-2 i)-(5+4 i)$

Imaginary Numbers continued

25. Simplify $\frac{5}{7+3 i}$	26. State the first four powers of "i"	27. Simplify $(6-2 i)(6+2 i)$
28. Find the absolute value of	29. State the conjugate of 9+5i	30. State the conjugate of 3i-9 (be careful)
$\|-2+7 i\|$		

Application

31. A rectangle has an area of 165 , one side length is x and the other side length is $x+7.2$
a. Write related quadratic equation in standard form
b. Find the value of x
c. Find the value of $x+7.2$
