This is worth TEN assignments and is due by the end of class today!

NO WORK = NO CREDIT X =
$$\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 D = $b^2 - 4ac$

There are several words that are interchangeable in mathematics in these sections

- a. Roots
- b. X intercepts
- c. Solutions
- d. Zeros

These words are the "answers" that we are looking for when we solve an equation, in particular when we are solving quadratic equations. So when a question asks you for the "root" of a quadratic equation, they are simply asking for the solution or the x intercept. Since we are setting an equation equal to 0, we can also say that we are looking for the zeros of a quadratic equation.

1. Find the zeros of the quadratic equation $x^2 - 12x = 2x + 32$

2. Find the roots of the quadratic equation $x^2 - 12x = 2x^2 + 52$

3. Find the solutions of the quadratic equation $3x^2 - 10x = 2x^2 - 32$

Name

Parts of a Parabola

4. Given that you know that the x intercepts of a parabola are (12, 0) and (-2, 0) find the axis of symmetry

- 5. Given the quadratic function $y = 12 3x^2 10x$ find the vertex and axis of symmetry and y intercept
 - a. Vertex as a point _____
 - b. Axis of symmetry as an equation ______
 - c. Y intercept as a point _____
- 6. Rewrite the following quadratic equation in standard form with a positive lead coefficient $-3x^2 7x = 8x^2 2$
 - a. Standard form equation ______ a = ____ b = ____ c = _____

b. What is the discriminant of this quadratic equation?

7.	Simplify the expression	8.	Simplify the expression	9.	Simplify the expression
	completely		completely		completely
	$\sqrt{-32}$		$-12 \pm \sqrt{-24}$		$8\pm4\sqrt{5}$
			6		10

10. If you have

	, then
your quadrat	ic equation
will have 1 re	eal solution
a. D=0)

- b. D>0
- c. D < 0
- 13. If you have

, then your quadratic equation will have 2 imaginary solutions a. D = 0 b. D > 0

- c. D < 0
- 16. If your parabola NEVER crosses the x axis, then you have _____
 - a. D = 0 b. D > 0 c. D < 0

11. If you have

	, then
your qu	uadratic equation
will hav	ve 2 real solutions
a.	D = 0
b.	D > 0
с.	D < 0

- 14. If your parabola "bounces" off the x axis, then you have ______a. D = 0
 - b. D > 0
 - c. D < 0
- 17. Which of the following discriminants comes from a factorable quadratic equation?
 a. D =12
 b. D =-25
 c. D =17
 d. D = 49

12. If you have

______, then your quadratic equation will have no real solutions a. D = 0

b. D > 0

c. D < 0

15. If your parabola crosses the x axis in two places , then you have

a.	D = 0
b.	D > 0

c. D < 0

- 18. Which of the following discriminants comes from a factorable quadratic equation?
 - a. D =12
 b. D =-25
 c. D =0
 - d. D = -64

Imaginary numbers	numbers	Imaginary
-------------------	---------	-----------

		18
 19. Which of the following is written in complex number form? a. 5i +6 b. 6 + 5i(5-i) c2 +6i d2-7i² 	20. Simplify i ¹⁴	21. Simplify i ⁴⁵
22. Simplify (6 - 2i)(5+4i)	23. (6 - 2i)+(5+4i)	24. (6 - 2i)-(5+4i)

Imaginary Numbers continued

25. Simplify $\frac{5}{7+3i}$	26. State the first four powers of "i"	27. Simplify (6 - 2i)(6+2i)
28. Find the absolute value of $ -2+7i $	29. State the conjugate of 9+5i	30. State the conjugate of 3i -9 (be careful)

Application