Algebra 2 (basic) ~ 2.1 Real Numbers & Their Properties (hrw.ret)

Goal: evaluate using order of operations; identify & use real number properties and apply

◆ Skill A Classifying real numbers

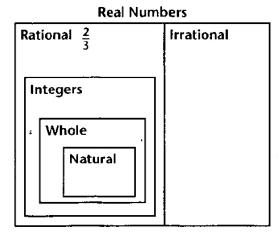
Recall You can classify a real number as belonging to the natural numbers, whole numbers, integers, rational numbers, or irrational numbers. A real number can belong to more than one set of numbers.

♦ Example

Classify -4 in as many ways as possible.

♦ Solution

- -4 is not a natural number because natural numbers are positive whole numbers.
- -4 is **not** a whole number because whole numbers are either positive or 0.
- -4 is an integer because integers are all the whole numbers and their opposites.
- -4 is a rational number because it can be written as the terminating decimal -4.0.
- -4 is a real number.


The number -4 is an integer, a rational number, and a real number.

Use the diagram to classify each number in as many ways as possible by writing it in the smallest rectangle in which it belongs. For example, $\frac{2}{3}$ is placed in the rectangle labeled rational.

- **1.** −8
- **2.** 25
- **3.** 6.8

- **4.** $\sqrt{2}$ **5.** $5\frac{1}{3}$ **6.** $-1.\overline{6}$
- 7. $\frac{3}{11}$
- 8. $-\sqrt{25}$

◆ **Skill B** Identifying properties of real numbers

Recall The real numbers are characterized by the Commutative and Associative Properties of Addition and Multiplication and by the Distributive Property.

♦ Example

Tell if the statement is true or false. Justify your response.

- **a.** $3ab^2 = 3b^2a$ **b.** x (y z) = (x y) z **c.** -4(a b) = -4a + 4b

- ♦ Solution
 - a. True Commutative Property of Multiplication
 - **b.** False Subtraction is **not** associative.
 - True Distributive Property

Tell whether each statement is true or false. State the property that is illustrated in each true statement. All variables represent real numbers.

11.
$$(16a)b = 16(ab)$$

12.
$$5x + (-5x) = 0$$

$$13. \quad 7x\left(\frac{1}{7x}\right) = 0$$

14.
$$5 - x = x - 5$$

15.
$$abd = adb$$

$$16. \quad 1 \cdot ax = ax$$

17.
$$3(x - wv) = 3x - 3wv$$

17.
$$3(x - wy) = 3x - 3wy$$
 18. $5(3 + y) = 5(y + 3)$

◆ Skill C Simplifying numerical expressions by using the order of operations

Recall The order of operations can be remembered by using the following sentence.

Please

Excuse My Dear

Aunt

Sally

Parentheses, Exponents, Multiplication and Division, Addition and Subtraction

♦ Example

Simplify
$$\frac{2^3}{6 - (3 + 1)} + 5$$
.

♦ Solution

$$\frac{2^3}{6-(3+1)}+5=\frac{2^3}{6-4}+5 \qquad \textit{Work inside parentheses first.}$$

$$=\frac{2^3}{2}+5 \qquad \textit{The fraction bar is a grouping symbol.}$$

$$=\frac{8}{2}+5 \qquad \textit{Perform exponentiation.}$$

$$=4+5$$

Check: Enter $2^3/(6-(3+1)) + 5$ into a calculator. Note the use of parentheses around 6 - (3 + 1). The display will show 9.

Simplify each expression. Use a calculator to check.

19.
$$5 \cdot 3^2 - 7$$

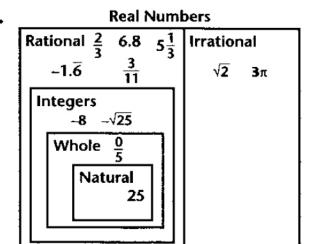
22.
$$\frac{8-2}{5-2}$$

23.
$$2 \cdot 5^{(3-2)}$$

24.
$$\frac{3+15}{3^2}-1$$

25.
$$48-6 \div 2+5\cdot 4$$
 26. $\frac{(7-3)^2}{7-3}-4$

26.
$$\frac{(7-3)^2}{7-3}$$
 -


27.
$$6 - \{6 - [6 - (6 - 2)] + 2\}$$

Algebra 2 (basic) ~ 2.1 Real Numbers & Their Properties (hrw.ret)

Goal: evaluate using order of operations; identify & use real number properties and apply

SOLUTIONS

1-10.

- 11. True; Associative Property of Multiplication
- 12. True; Inverse Property of Addition
- **13.** False **14.** False
- **15.** True; Commutative Property of Multiplication
- **16.** True; Identity for Multiplication
- **17.** True; Distributive Property
- 18. True; Commutative Property of Addition
- **19.** 38 **20.** 2 **21.** 9 **22.** 2 **23.** 10
- **24.** 1 **25.** 65 **26.** 0 **27.** 0

Name Date Hour

Algebra 2 (basic) ~ 2.1 Real Numbers & Their Properties (hrw.pra)

Goal: evaluate using order of operations; identify & use real number properties and apply

Classify each number in as many ways as possible.

1.
$$\frac{13}{17}$$

2.
$$\sqrt{91}$$

5.
$$-\sqrt{900}$$

State the property that is illustrated in each statement. Assume that all variables represent real numbers.

7.
$$75 + (-75) = 0$$

9.
$$-2 + (33 + 18) = (-2 + 33) + 18$$

10.
$$\frac{54}{k} \cdot \frac{k}{54} = 1$$
, where $k \neq 0$

11.
$$47y \cdot 3x = 3x \cdot 47y$$

12.
$$14(x+91) = 14x + 14(91)$$

13.
$$\frac{7}{8} + 0 = \frac{7}{8}$$

Evaluate each expression by using the order of operations.

14.
$$-2 \cdot 4^2 - 1$$
 ______ 15. $52 \div (2 + 11)$ _____

16.
$$27 + 8 \cdot 2$$
 ______ 17. $45 - 16 \div 8$ ______

18.
$$13 \times 3 + 2 \times 5$$
 ______ 19. $12 + 8^2 \div 4$ ______

20.
$$\frac{150-38}{4}-4+2$$
 21. $(13-7)^2 \div 5$

22.
$$(77-50)-(13-42)$$
 23. $7\cdot 12+30\div 5$ **29.**

SOLUTIONS

- 1. rational, real
- 2. irrational, real
- 3. irrational, real
- 4. rational, real
- 5. integer, rational, real
- 6. rational, real
- 7. Inverse Property of Addition
- 8. Identity Property of Multiplication
- 9. Associative Property of Addition
- 10. Inverse Property of Multiplication
- 11. Commutative Property of Multiplication
- 12. Distributive Property
- 13. Identity Property of Addition
- 14. -33 15. 4 16. 43 17. 43 18. 49
- **19**. 28 **20**. 26 **21**. 7.2 **22**. 56 **23**. 90