Algebra 2 (basic) ~ 2.2 Properties of Exponents (ret)

Goal: evaluate and simplify expressions with exponents & apply

◆ **Skill A** Evaluating numerical expressions with exponents

Recall You can associate a negative exponent with a reciprocal.

♦ Example 1

Without using a calculator, evaluate each expression.

a.
$$4^3$$

c.
$$4^{-1}$$

a.
$$4^3$$
 b. 4^0 **c.** 4^{-1} **d.** 4^{-3} **e.** $4^{\frac{1}{4}}$

$$e^{4^{\frac{1}{4}}}$$

$$\frac{3}{2}$$

♦ Solution

a.
$$4^3 = 4 \cdot 4 \cdot 4 = 64$$

b.
$$4^0 = 1$$

For any nonzero number a, $a^0 = 1$.

c.
$$4^{-1} = \frac{1}{4^1} = \frac{1}{4}$$

A negative exponent indicates a reciprocal.

Notice that the result is not negative.

d.
$$4^{-3} = \frac{1}{4^3} = \frac{1}{64}$$

e.
$$4^{\frac{1}{2}} = \sqrt{4} = 2$$

$$a^{\frac{1}{n}} = \sqrt[n]{a}$$

f.
$$4^{\frac{3}{2}} = (\sqrt{4})^3 = 2^3 = 8$$
 $a^{\frac{m}{n}} = (\sqrt[n]{a})^m$

$$a^{\frac{m}{n}} = (\sqrt[n]{a})^m$$

♦ Example 2

Express each number as a power of 3.

b. 1 **c.**
$$9^3$$
 d. $\frac{1}{27}$ **e.** $\sqrt{3}$ **f.** $\sqrt{27}$

e.
$$\sqrt{3}$$

f.
$$\sqrt{27}$$

♦ Solution

b.
$$1 = 3^0$$

c.
$$9^3 = (3^2)^3 = 3^6$$

d.
$$\frac{1}{27} = \frac{1}{3^3} = 3^{-3}$$

e.
$$\sqrt{3} = 3^{\frac{1}{2}}$$

a.
$$81 = 3^4$$
 b. $1 = 3^0$ **c.** $9^3 = (3^2)^3 = 3^6$ **d.** $\frac{1}{27} = \frac{1}{3^3} = 3^{-3}$ **e.** $\sqrt{3} = 3^{\frac{1}{2}}$ **f.** $\sqrt{27} = \sqrt{3^3} = 3^{\frac{3}{2}}$

Evaluate each expression.

4.
$$(6x)^0$$

4.
$$(6x)^0$$
 5. $(2 \cdot 3)^2$ **...**

6.
$$3^0 \cdot 3^3 \cdot 3$$

7.
$$2^{-1}$$
 _____ 9. $\left(\frac{2}{3}\right)^2$

9.
$$\left(\frac{2}{3}\right)^2$$

11.
$$\left(\frac{2}{3}\right)^{-2}$$

12.
$$\left(\frac{1}{5}\right)^2$$

13.
$$\left(-\frac{1}{5}\right)^2$$
 ______ **14.** $16^{\frac{1}{4}}$ _____

15.
$$16^{\frac{3}{2}}$$

16.
$$27^{\frac{2}{3}}$$
 _____ **17.** $49^{\frac{3}{6}}$

17.
$$49^{\frac{3}{6}}$$

18.
$$9^{-\frac{3}{2}}$$

Express each number as a power of 2, if possible.

22.
$$\frac{1}{2}$$

19. 32 ____ **20.** 1 ____ **21.**
$$4^5$$
 ____ **22.** $\frac{1}{2}$ ____ **23.** $\frac{1}{8}$ ____

24.
$$\sqrt{32}$$

25.
$$\sqrt[3]{2}$$

24.
$$\sqrt{32}$$
 _____ **25.** $\sqrt[3]{2}$ _____ **26.** $-\frac{1}{16}$ _____ **27.** 0 _____ **28.** $8^{\frac{2}{3}}$ _____

28.
$$8^{\frac{2}{3}}$$

Algebra 2 (basic) ~ 2.2 Properties of Exponents (ret)

Goal: evaluate and simplify expressions with exponents & apply

◆ **Skill B** Simplifying algebraic expressions involving exponents

Recall When you simplify an algebraic expression involving exponents, use Properties of Exponents.

- ♦ Example 1 Simplify $\left(\frac{-x^5}{2x^{-3}v^4}\right)^4$. Write your answer using positive exponents only.
 - Power of a Quotient: $\left(\frac{a}{b}\right)^{n} = \frac{a^{n}}{b^{n}}$ $= \frac{x^{20}}{16x^{-12}y^{16}}$ Power of a Power: $(a^{m})^{n} = a^{mn}$ $= \frac{x^{20-(-12)}}{16y^{16}}$ Quotient of Powers: $\frac{a^{m}}{a^{n}} = a^{m-n}$ $= \frac{x^{32}}{16y^{16}}$
- ♦ **Example 2** Simplify $5x(yx^{-\frac{3}{2}})^{-2}$. Write your answer using positive exponents only.
 - Solution $5x\left(yx^{-\frac{3}{2}}\right)^{-2} = 5x(y^{-2}x^{3}) \qquad Power of a Product: (ab)^{n} = a^{n}b^{n}$ $= 5x^{4}y^{-2} \qquad Power of Powers: (a^{m})^{n} = a^{mn}$ $= \frac{5x^{4}}{y^{2}} \qquad Definition of negative exponent: a^{-n} = \frac{1}{a^{n}}$

Simplify each expression, assuming that no variable equals zero. Write your answer using positive exponents only.

29.
$$a^2a^4a^3$$

30.
$$x^3(5x)^2$$

31.
$$(3x^2y)(xy^2)$$

32.
$$(a^2b)(-3ab^3)(2ab)$$

33.
$$(c^2d)^3(cd^3)^2$$

34.
$$(2x^2y^3)^3(3x^3y^0)^2$$

35.
$$\left(-\frac{z^3}{y^2}\right)^5$$

36.
$$\left(\frac{4x^2y^{-3}}{y^{-2}}\right)^{-1}$$

37.
$$(x^{-5}y^{-1})^{-2}(x^2y^{-4})^3$$

38.
$$\left(\frac{3x}{y^{-3}}\right)^3 \left(\frac{5x^{-10}yz^2}{2x^{-1}y^3}\right)^{-2}$$

Algebra 2 (basic) ~ 2.2 Properties of Exponents (ret)

Goal: evaluate and simplify expressions with exponents & apply

SOLUTIONS

1. 25 **2.** 32 **3.** 6 **4.** 1 **5.** 36 **6.** 81

7. $\frac{1}{2}$ 8. $\frac{1}{8}$ 9. $\frac{4}{9}$ 10. $\frac{3}{2}$ 11. $\frac{9}{4}$

12. $-\frac{1}{25}$ **13.** $\frac{1}{25}$ **14.** 4 **15.** 64. **16.** 9

17. 7 18. $\frac{1}{27}$ 19. 25 20. 20 21. 210

22. 2^{-1} **23.** 2^{-3} **24.** $2^{\frac{5}{2}}$ **25.** $2^{\frac{1}{3}}$

26. -2^{-4} **27.** not possible **28.** 2^2 **29.** a^9

30. $25x^5$ **31.** $3x^3y^3$ **32.** $-6a^4b^5$ **33.** c^8d^9

34. $72x^{12}y^9$ **35.** $-\frac{z^{15}}{v^{10}}$ **36.** $\frac{y}{4x^2}$ **37.** $\frac{x^{16}}{v^{10}}$

38. $\frac{108x^{21}y^{13}}{25x^4}$