\qquad
Examples

Quadratic term Linear term 1 X^{2} +4 X	Linear term 2 constant $+2 x \quad+8$
Factored form of the first two terms $x(x+4)$ IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	Factored form of the last two terms $\begin{gathered} +2(x+4) \\ (x+4)(x+2)=x^{2}+4 x+2 x+8 \\ =x^{2}+6 x+8 \end{gathered}$
Quadratic term Linear term 1 x^{2} $+5 x$	$\begin{array}{rr} \text { Linear term 2 } & \text { constant } \\ +2 x & +8 \end{array}$
Factored form of the first two terms $x(x+5)$ IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	Factored form of the last two terms $\begin{gathered} +2(x+4) \\ x^{2}+5 x+2 x+8=x^{2}+7 x+8 \end{gathered}$ this is NOT FACTORABLE
Quadratic term Linear term 1 X^{2} -4 X	Linear term 2 constant $+1 x$ -4
Factored form of the first two terms $x(x-4)$ IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	Factored form of the last two terms $\begin{gathered} +1(x-4) \\ (x-4)(x+1)=x^{2}-4 x+1 x-4 \\ =x^{2}-3 x-4 \end{gathered}$
Quadratic term Linear term 1 x^{2} $+2 x$	Linear term 2 constant $-5 x$ -10
Factored form of the first two terms $x(x+2)$	Factored form of the last two terms $-5(x+2)$
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	$\begin{aligned} (x+2)(x-5) & =x^{2}+2 x-5 x-10 \\ & =x^{2}-3 x-10 \end{aligned}$

This method of factoring is called the AC method, we have skipped the "hard" step, we'll get to that step after you can takeit from the second step.

Quadratic term Linear term 1 x^{2} $+6 x$	Linear term 2 constant $+3 x$ +18
Factored form of the first two terms	Factored form of the last two terms
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	
Quadratic term Linear term 1 x^{2} $+4 x$	Linear term 2 constant $+6 x$ +24
Factored form of the first two terms	Factored form of the last two terms
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	
Quadratic term Linear term 1 x^{2} $-6 x$	Linear term 2 constant $+8 x$ -48
Factored form of the first two terms	Factored form of the last two terms
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	
Quadratic term Linear term 1 x^{2} $-6 x$	Linear term 2 constant $-6 x$ $+36$
Factored form of the first two terms	Factored form of the last two terms
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	
Quadratic term Linear term 1 X^{2} +3 X	Linear term 2 constant $-3 x$
Factored form of the first two terms	Factored form of the last two terms
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses	

\qquad ICP Factoring using the AC Method part 2 11-30-15

If not factorable state so

$x^{2}-14 x-32$	List AC x^{2}	List all of the ways to get AC x^{2}	List all the ways factors of $A C x^{2}$ can add to Bx
Quadratic term	Linear term 1	Linear term 2	constant
Factored form of the first two terms		Factored form of the last two terms	
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses			
$x^{2}-13 x+40$	List AC x ${ }^{2}$	List all of the ways to get AC x^{2}	List all the ways factors of $A C x^{2}$ can add to Bx
Quadratic term	Linear term 1	Linear term 2	constant
Factored form of the first two terms		Factored form of the last two terms	
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses			
$x^{2}+3 x-54$	List AC x ${ }^{2}$	List all of the ways to get AC x^{2}	List all the ways factors of $A C x^{2}$ can add to Bx
Quadratic term	Linear term 1	Linear term 2	constant
Factored form of the first two terms		Factored form of the last two terms	
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses			

$x^{2}-12 x+35$	List AC x ${ }^{2}$	List all of the ways to get AC x^{2}	List all the ways factors of $\mathrm{AC} \mathrm{x}^{2}$ can add to Bx
Quadratic term	Linear term 1	Linear term 2	constant
Factored form of the first two terms		Factored form of the last two terms	
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses			
$x^{2}+22 x-48$	List AC x ${ }^{2}$	List all of the ways to get AC x^{2}	List all the ways factors of $A C x^{2}$ can add to Bx
Quadratic term	Linear term 1	Linear term 2	constant
Factored form of the first two terms		Factored form of the last two terms	
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses			
$x^{2}-20 x+60$	List AC x ${ }^{2}$	List all of the ways to get AC x^{2}	List all the ways factors of $\mathrm{AC} \mathrm{x}^{2}$ can add to Bx
Quadratic term	Linear term 1	Linear term 2	constant
Factored form of the first two terms		Factored form of the last two terms	
IF there is a BINOMIAL in common, then factor it OUT Keep all of the rest of the terms in a single parentheses			

Each of these is factorable Practice! Practice! Practice!					
1	$x^{2}+21 x+20$		21	$x^{2}-16 x+48$	
2	$x^{2}+21 x+38$		22	$x^{2}-6 x-55$	
3	$x^{2}+21 x+54$		23	$x^{2}-11 x+10$	
4	$x^{2}+21 x+68$		24	$x^{2}-11 x+18$	
5	$x^{2}+21 x+80$		25	$x^{2}-5 x-24$	
6	$x^{2}+14 x-15$		26	$x^{2}-3 x-28$	
7	$x^{2}+16 x+28$		27	$x^{2}-11 x+30$	
8	$x^{2}+10 x-39$		28	$x^{2}-6 x+5$	
9	$x^{2}+8 x-48$		29	$x^{2}-6 x+8$	
10	$x^{2}+16 x+55$		30	$x^{2}-6 x+9$	
11	$x^{2}+9 x-10$		31	$x^{2}+2 x-8$	
12	$x^{2}+7 x-18$		32	$x^{2}+4 x-5$	
13	$x^{2}+11 x+24$		33	$x^{2}-19 x-20$	
14	$x^{2}+11 x+28$		34	$x^{2}-16 x+39$	
15	$x^{2}+x-30$		35	$x^{2}-17 x-38$	
16	$x^{2}+4 x-5$		36	$x^{2}-15 x-54$	
17	$x^{2}+2 x-8$		37	$x^{2}-13 x-68$	
18	$x^{2}-9$		38	$x^{2}-11 x-80$	
19	$x^{2}+6 x+8$		39	$x^{2}-16 x+15$	
20	$x^{2}+6 x+5$		40	$x^{2}-12 x-28$	

FOIL Practice

	Binomial factor 1	Binomial factor 2	Quadratic term	Linear term 1	Linear term 2	Constant	Simplified product
1	$(2 x+1)$	$(x+2)$					
2	$(2 x+1)$	$(3 x+2)$					
3	$(3 x+1)$	$(3 x+2)$					
4	$(2 x-1)$	$(2 x+1)$					
5	$(2 x+1)$	$(2 x+1)$					
6	$(2 x-3)$	$(x+3)$					
7	$(2 x+4)$	$(x+4)$					
8	$(2 x-3)$	$(x-2)$					
9	$(2 x+1)$	$(x-5)$					
10	$(6 x-1)$	$(3 x+2)$					
11	$(8 x+1)$	$(5 x+2)$					
12	$(6 x-1)$	$(5 x+2)$					
13	$(7 x-1)$	$(4 x-3)$					
14	$(9 x+4)$	$(3 x-2)$					
15	$(5 x-2)$	$(5 x+2)$					
16	$(5 x+1)$	$(10 x+2)$					
17	$(3 x-1)$	$(x-12)$					
18	$(3 x+5)$	$(6 x+7)$					
19	$(6 x+7)$	$(8 x+5)$					
20	$(8 x-3)$	$(7 x+5)$					

