Name \qquad ICP Compound Inequalities 9-11-15 CONJUNCTIONS and DISJUNCTIONS

1. A conjunction is merging of solution sets of two inequalities. These solution sets \qquad agree (MUST, CAN)
2. A conjunction is the INTERSECTION of solutions sets, only the members of both solution sets are solutions to the compound inequality separated by an AND

I will represent this with a Venn Diagram and three number line graphs

Graph the solution set of $x>-4$

Graph the solution set of $x<6$

Graph the solution set of $x>-4 \quad \mathrm{AND} \quad x<6$

We can think of the solutions of this compound inequality as the numbers we can put in both solutions sets only
We cannot put any of the "boundary solutions" in the solution set because of the > and < symbols

Compound inequality $\quad x>-8 \quad \mathrm{AND} \quad x \leq-1$ This is a CONJUNCTION because of the AND statement

We can think of the solutions of this compound inequality as the numbers we can put in both solutions sets only
We can ONLY put the "boundary solutions" in the solution set from $x \leq-1$ because of the $>$ and $<$ symbols

Special Cases of CONJUNCTION

(two inequalities going the same way (always take the SMALLER set)
(two inequalities going the opposite direction sharing NOTHING in common NO SOLUTIONS)
Compound inequality $x \geq 0$ AND

1. A disjunction is collection of solutions from either of sets of two inequalities. These solution sets \qquad agree (MUST, CAN)
2. A disjunction is the UNION of solutions sets, ANY of the members of both solution sets are solutions to the compound inequality separated by an OR I will represent this with a Venn Diagram and three number line graphs

Compound inequality $\quad x>3$ OR $\quad x<-7$ This is a DISJUNCTION because of the OR statement

Graph the solution set of $x<-7$

Graph the solution set of $x>3$ OR $\quad x<-7$

We can think of the solutions of this compound inequality as the numbers we can put in EITHER solutions set
We cannot put any of the "boundary solutions" in the solution set because of the > and < symbols

Compound inequality $\quad x>9$ OR $x \leq 4$ This is a DISJUNCTION because of the OR statement

Graph the solution set of $x>9$	OR	$x \leq 4$		
-10	-5	0	5	10

We can think of the solutions of this compound inequality as the numbers we can put in both solutions sets only We can ONLY put the "boundary solutions" in the solution set from $\mathrm{x} \leq 4$ because of the symbol

Special Cases of DISJUNCTION

(two inequalities going the same way (always take the LARGER set)
(two inequalities going the opposite direction sharing ANYTHING in common ALL SOLUTIONS)
Compound inequality $x \geq$,

Compound inequality $x \geq-9$ OR $x<1$ This is a DISJUNCTION because of the OR statement

We can think of the solutions of this compound inequality as the numbers we can put in EITHER or BOTH solutions sets
Since we can ALWAYS put solutions in either set we MUST state that the solutions of $x \geq-9 \quad \mathrm{OR} \quad x<1$ has ALL REAL NUMBERS AS SOLUTIONS

Given UNSIMPLIFIED compound inequality $2 x-1>7$ OR $x+5 \leq-2$	Graph of the solution set of the compound inequality
WORK to simplify	10 -5 -10 0 10
IF NO solutions state so	
Simplified Compound inequality	If ALL solutions state so
Given UNSIMPLIFIED compound inequality $2 x-1>-7$ OR $x-5 \leq-2$	Graph of the solution set of the compound inequality
WORK to simplify	$\begin{array}{llllll}10 & 1 & & \\ -10 & -5 & 0 & 5 & \end{array}$
	NO solutions state so
Simplified Compound inequality	
Briefly discuss in your group how ONE negative sign totally changes the two problems	
Given UNSIMPLIFIED compound inequality $-4 x>-12$ OR $\quad x-8 \geq 1$	Graph of the solution set of the compound inequality
WORK to simplify	10 -5 -10
IF NO solutions state so	
Simplified Compound inequality	If ALL solutions sta
Briefly discuss in your group how ONE negative sign totally changes this problem	

